Al-Farabi Kazakh National University Higher School of Medicine Department of Fundamental Medicine

Bioinformatics

Lecturer and creator: PhD Pinsky Ilya Vladimirovich

LEARNING OUTCOMES As a result of the lesson you will be able to:

- 1. Explain the terms "bioinformatics", "computational biology" and "system biology".
- 2. Analyze the bioinformatical methods used in different "Omics" technologies, give the specific examples.
- 3. Explain the differences between structural, functional and evolutional bioinformatics.
- 4. Give and describe the examples of bioinformatical computer programs used for different tasks.
- 5. Classify and describe the main bioinformatical databases, give the specific examples.

Definitions

Bioinformatics (/ bai.oo infər mætiks/) is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combines biology, computer science, information engineering, mathematics and statistics to analyze and interpret the biological data. Bioinformatics has been used for *in silico* analyses of biological queries using mathematical and statistical techniques.

Bioinformatics includes biological studies that use computer programming as part of their methodology, as well as a specific analysis "pipelines" that are repeatedly used, particularly in the field of genomics. Common uses of bioinformatics include the identification of **candidates genes and single nucleotide polymorphisms (SNPs)**. Often, such identification is made with the aim of better understanding the genetic basis of disease, unique adaptations, desirable properties (esp. in agricultural species), or differences between populations. In a less formal way, bioinformatics also tries to understand the organizational principles within nucleic acid and protein sequences, called **proteomics**.[1]

- Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research.
- **Computational biology** involves the development and application of data-analytical and theoretical methods, mathematical modelling and computational simulation techniques to the study of biological, ecological, behavioural, and social systems. The field is broadly defined and includes foundations in biology, applied mathematics, statistics, biochemistry, chemistry, biophysics, molecular biology, genetics, genomics, computer science, and evolution.
- Computational biology is different from **biological computing**, which is a subfield of computer engineering, using bioengineering and biology to build computers. [2-7]

Genome Annotation | CityU-Bioinformatics cityu-bioinformatics.netlify.app

https://en.wikipedia.org/wiki/Gene_prediction#/media/File:Gene_structure.svg

https://en.wikipedia.org/wiki/Gene_prediction#/media/File:Gene_Prediction.png

GeneMark

A family of gene prediction programs developed at **Georgia Institute of Technology**, Atlanta, Georgia, USA.

Borodovsky Group Group news

Gene Prediction

GeneMarkGeneMark.hmm

GeneMarkSGeneMarkS-2

Heuristic models

MetaGeneMark

GeneMarkS+

Publications

Selected CitationsBackground

BRAKER1 & 2

Programs

Information

FAQ

Downloads

Contact

Programs

Other Programs

UnSplicer

GeneTack

Gene Prediction in Bacteria, Archaea, Metagenomes and Metatranscriptomes

Novel genomic sequences can be analyzed either by the self-training program GeneMarkS (sequences longer than 50 kb) or by GeneMark.hmm with Heuristic models. For many species pre-trained model parameters are ready and available through the GeneMark.hmm page. Metagenomic sequences can be analyzed by MetaGeneMark, the program optimized for speed.

Gene Prediction in Eukaryotes

Novel genomes can be analyzed by **GeneMark-ES**, an algorithm utilizing models parameterized by unsupervised training. Notably, GeneMark-ES has a special option for fungal genomes to account for fungal-specific intron organization. To integrate into GeneMark-ES information on mapped RNA-Seq reads, we made semi-supervised GeneMark-ET. Recently, we have developed **GeneMark-EP+** that uses homologous protein sequences of any evolutionary distance in both training and predictions.

Gene Prediction in Transcripts

O

Sets of assembled eukaryotic transcripts can be analyzed by the modified **GeneMarkS** algorithm (the set should be large enough to permit self-training). A single transcript can be analyzed by a special version of **GeneMark.hmm with Heuristic models**. A new advanced algorithm GeneMarkS-T was developed recently (manuscript sent to publisher); The GeneMarkS-T software (beta version) is available for download.

Gene Prediction in Viruses, Phages and Plasmids

Sequences of viruses, phages or plasmids can be analyzed either by the **GeneMark.hmm with Heuristic models** (if the sequence is shorter than 50 kb) or by the self-training program **GeneMarkS**.

P

W

Frame-by-FrameIPSSP

In silico Biology

Map of the human X chromosome (from the National Center for Biotechnology Information website).

https://en.wikipedia.org/wiki/Bioinformatics#/media/File:Genome_viewer_screenshot_small .png

A5ASC3.1	14	SIKLWPPSQTTRLLLVERMANNLSTPSIFTRKYGSLSKEEARENAKQIEEVACSTANQHYEKEPDGDGGSAVQLYAKECSKLILEVLK 10	01
B4F917.1	13	SIKLWPPSESTRIMLVDRMTNNLSTESIFSRKYRLLGKQEAHENAKTIEELCFALADEHFREEPDGDGSSAVQLYAKETSKMMLEVLK 10	00
A9S1V2.1	23	VFKLWPPSQGTREAVROKMALKLSSACFESQSFARIELADAQEHARAIEEVAFGAAQEADSGGDKTGSAVVMVYAKHASKLMLETLR 10	09
B9GSN7.1	13	SVKLWPPGQSTRLMLVERMTKNFITPSFISRKYGLLSKEEAEEDAKKIEEVAFAAANQHYEKQPDGDGSSAVQIYAKESSRLMLEVLK 10	00
Q8H056.1	30	SFSIWPPTQRTRDAVVRRLVDTLGGDTILCKRYGAVPAADAEPAARGIEAEAFDAAAASGEAAATASVEEGIKALQLYSKEVSRRLLDFVK 12	20
Q0D4Z3.2	44	SLSIWPPSQRTRDAVVRRLVQTLVAPSILSQRYGAVPEAEAGRAAAAVEAEAYAAVTES.SSAAAAPASVEDGIEVLQAYSKEVSRRLLELAK 13	35
B9MVW8.1	56	SFSIWPPTQRTRDAIISRLIETLSTTSVLSKRYGTIPKEEASEASRRIEEEAFSGASTVASSEKDGLEVLQLYSKEISKRMLETVK 14	41
QOIYC5.1	29	SFAVWPPTRRTRDAVVRRLVAVLSGDTTTALRKRYRYGAVPAADAERAARAVEAQAFDAASASSSSSSSVEDGIETLQLYSREVSNRLLAFVR 12	21
A9NW46.1	13	SIKLWPPSESTRLMLVERMTDNLSSVSFFSRKYGLLSKEEAAENAKRIEETAFLAANDHEAKEPNLDDSSVVQFYAREASKLMLEALK 10	00
Q9C500.1	57	SLRIWPPTQKTRDAVLNRLIETLSTESILSKRYGTLKSDDATTVAKLIEEEAYGVASNAVSSDDDGIKILELYSKEISKRMLESVK 14	42
Q2HRI7.1	25	NYSIWPPKORTRDAVKNRLIETLSTPSVLTKRYGTMSADEASAAAIQIEDEAFSVANASSSTSNDNVTILEVYSKEISKRMIETVK 11	10
Q9M7N3.1	28	SFKIWPPTQRTREAVVRRLVETLTSQSVLSKRYGVIPEEDATSAARIIEEEAFSVASV.ASAASTGGRPEDEWIEVLHIYSQEIXQRVVESAK 11	19
Q9M7N6.1	25	SFSIWPPTQRTRDAVINRLIESLSTPSILSKRYGTLPQDEASETARLIEEEAFAAAGSTASDADDGIEILQVYSKEISKRMIDTVK 11	10
Q9LE82.1	14	SVKMWPPSKSTRLMLVERMTKNITTPSIFSRKYGLLSVEEAEQDAKRIEDLAFATANKHFQNEPDGDGTSAVHVYAKESSKLMLDVIK 10	01
Q9M651.2	13	SIKLWPPSLPTRKALIERITNNFSSKTIFTEKYGSLTKDQATENAKRIEDIAFSTANQQFEREPDGDGGSAVQLYAKECSKLILEVLK 10	00
B9R748.1	48	SLSIWPPTORTRDAVITRLIETLSSPSVLSKRYGTISHDEAESAARRIEDEAFGVANTATSAEDDGLEILQLYSKEISRRMLDTVK 13	33

https://en.wikipedia.org/wiki/Bioinformatics#/media/File:WPP_domain_alignment. PNG +

Web BLAST

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. Learn more

A new feature was added to Primer-BLAST.

- We now offer the ability for user to run primer-blast to NCBI assembly page..
 - Tue, 23 Feb 2021 12:00:00 EST

BLAST Genomes

Enter orga	nism common na	me, scientific	name, or tax id	Search
Human	Mouse	Rat	Microbes	

Pe

P

W

N

E

W

S

Standalone and API BLAST

0

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC...

3-dimensional protein structures such as this one are common subjects in bioinformatic analyses.

https://en.wikipedia.org/wiki/Bioinformatics#/media/File:1kqf_opm.png

Häuser et al. - Titz B, Rajagopala SV, Goll J, Ha üser R, McKevitt MT, et al. (2008) The Binary Protein Interactome of *Treponema pallidum* – The Syphilis Spirochete. PLoS ONE 3(5): e2292. doi:10.1371/journal.pone.0002292 The protein interaction network of *T. pallidum* including 576 proteins and 991 interactions. Nodes are color-coded according to TIGR main roles. Proteins involved in DNA metabolism are shown as enlarged red circles.

Phylogenetic trees | Evolutionary tree khanacademy.org

Best Free Bioinformatics Software

Recommended Good

Apache Taverna - Bioinformatics taverna.org.uk

Types of bioinformatic databases

- Archives (GeneBank & EMBL, PDB)
- Curated (Swiss-Prot, KEGG, FlyBase, COG)
- Derivatives (SCOP, PFAM, GO, ProDom, AsMamDB)
- Integrated (NCBI Entrez, Ecocyc)

😫 Home - Gene - NCBI	×	+				
\leftrightarrow \rightarrow C \oplus nc	bi.nlm.nih.gov	//gene/				
	S NCBI	Resources 🕑 How To 오				
	Gene	Gene 🗸	Advanced			S
	0	COVID-19 is an emergin Public health information (CDC)	g, rapidly ev Research informa	volving situation. tion (NIH) SARS-CoV-2 data (NCBI)	Prevention and treatment inf	<u>ormation (HHS)</u>
		a Contraction of		Gene		
	- 1		10	Gene integrates information from (RefSeqs), maps, pathways, varia worldwide.	a wide range of species. A r ations, phenotypes, and links	ecord may include nomenclatur s to genome-, phenotype-, and l
	Using Ge	ene		Gene Tools		Other Resources
	Gene Quick	<u>< Start</u>		Submit GeneRIFs		OMIM
	FAQ			Submit Correction		RefSeq
	Download/F	<u>-TP</u>		<u>Statistics</u>		<u>RefSeqGene</u>
	<u>RefSeq Ma</u>	<u>iling List</u>		<u>BLAST</u>		Protein Clusters
	Gene News	3		Genome Workbench		
	Factsheet			Splign		
	Represe	ntative queries				
	Find gene	es by	Search text			
	free text		human muscula	ar dystrophy		
	chromosom	ie and symbol	(II[chr] OR 2[ch	<u>r]) AND adh*[sym]</u>		

0 💽 💼 📘 🚘 🧮 🚱 💌

	🐣 EMBL-EBI	🔌 Services	🔀 Research	🎄 Training	1
^ ⁰					
MBL-EBI					
				nii niktroit sollin	
home for big data in biology	Explore dozens	of biological o	lata resources w	rith our <u>Search</u>	servio
e home for big data in biology help scientists exploit complex information to make	Explore dozens Find a gene, p	of biological o	lata resources w ical	ith our <u>Search</u>	<u>servi</u>

We have been working behind the scenes to tackle the COVID-19 pandemic. Read more about our response and resources.

Featured topic

Latest news

Pe

6

W

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our <u>Privacy Notice</u> and <u>Terms of Use</u>.

0

The mission of UniProt is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional informatio

We'd like to inform you that we have updated our Privacy Notice to comply with Europe's new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

0

W

Po

Р

← → C ▲ Не защищено | wwpdb.org

VALIDATION - DEPOSITION - DICTIONARIES - DOCUMENTATION - TASK FORCES - FTP - STATISTICS -

Since 1971, the Protein Data Bank archive (PDB) has served as the single repository of information about the 3D structures of proteins, nucleic acids, and complex assemblies.

The Worldwide PDB (wwPDB) organization manages the PDB archive and ensures that the PDB is freely and publicly available to the global community.

Celebrating 50 Years of the PDB

Vision and Mission

Vision

Sustain freely accessible, interoperating Core Archives of structure data and metadata for biological macromolecules as an enduring public good to promote basic and applied research and education across the sciences.

Mission

- Manage the wwPDB Core Archives as a public good according to the FAIR Principles.
- Provide expert deposition, validation, biocuration, and remediation services at no charge to Data Depositors worldwide.
- Ensure universal open access to public domain structural biology data with no limitations on usage.
- Develop and promote community-endorsed data standards for archiving and exchange of global

Data Dictionaries

- Macromolecular Dictionary (PDBx/mmCIF)
- Small Molecule Dictionary (CCD)
- Peptide-like antibiotic and inhibitor molecules (BIRD)

wwPDB Resources

Biocuration

- Procedures and policies
- Improvements for consistency and accuracy

Community Input: Task Forces and Working Groups

- Validation Task Forces (X-ray, NMR, 3DEM)
- Small Angle Scattering Task Force
- > PDBx/mmCIF Working Group
- Hybrid/Integrative Methods Task Force

P

Ligand Validation Workshon

News & Ann

03/08/2021

Submit Abstracts for PD

Ea Ma PD 4-5

Read more

03/02/2021

More than 1,000 SARS-C Protein Structures Availa

Op pro

noi

References

- 1. Lesk, A. M. (26 July 2013). "Bioinformatics". Encyclopaedia Britannica.
- Tavassoly, Iman; Goldfarb, Joseph; Iyengar, Ravi (2018-10-04). "Systems biology primer: the basic methods and approaches". Essays in Biochemistry. 62 (4): 487–500. doi:10.1042/EBC20180003. ISSN 0071-1365. PMID 30287586.
- 3. Zewail, Ahmed (2008). Physical Biology: From Atoms to Medicine. Imperial College Press. p. 339.
- Longo, Giuseppe; Montévil, Maël (2014). Perspectives on Organisms Springer. Lecture Notes in Morphogenesis. doi:10.1007/978-3-642-35938-5. ISBN 978-3-642-35937-8. S2CID 27653540.
- Bu Z, Callaway DJ (2011). "Proteins MOVE! Protein dynamics and long-range allostery in cell signaling". Protein Structure and Diseases. Advances in Protein Chemistry and Structural Biology. 83. pp. 163–221. doi:10.1016/B978-0-12-381262-9.00005-7. ISBN 978-0-123-81262-9. PMID 21570668.
- "NIH working definition of bioinformatics and computational biology" (PDF). Biomedical Information Science and Technology Initiative. 17 July 2000. Archived from the original (PDF) on 5 September 2012. Retrieved 18 August 2012.
- 7. "About the CCMB". Center for Computational Molecular Biology. Retrieved 18 August 2012.